

#### AQA Chemistry A-level Topic 1.4 - Energetics Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0







#### What energy change is breaking bonds associated with?







What energy change is breaking bonds associated with?

### Energy is taken in to break bonds $\rightarrow$ endothermic reaction







# What energy change is making bonds associated with?







What energy change is making bonds associated with?

### Energy is released to make bonds $\rightarrow$ exothermic reaction







## What are some uses of thermochemistry?





### What are some uses of thermochemistry?

- Measuring and comparing the energy values of fuels
- Calculating the energy requirements for industrial processes
- Working out the theoretical amount of energy released/taken in in a reaction
- Predicting if a reaction will take place or not







## What is an endothermic reaction?







#### What is an endothermic reaction?

## One with an overall positive enthalpy change $(+\Delta H) \rightarrow$ energy in breaking bonds > energy out making bonds







## What is an exothermic reaction?







#### What is an exothermic reaction?

## One with an overall negative enthalpy change $(-\Delta H) \rightarrow$ energy in breaking bonds < energy out making bonds







### If a reversible reaction is endothermic one way, what type of the reaction is the other way?







### If a reversible reaction is endothermic one way, what type of reaction is the other way?

#### exothermic







## Give 2 examples of exothermic reactions







Give 2 examples of exothermic reactions

#### **Combustion of fuels**

#### Neutralisation







## Give an example of an endothermic reaction







#### Give an example of an endothermic reaction

#### Thermal decomposition







#### Define enthalpy change; what symbol is used to represent it?







Define enthalpy change; what symbol is used to represent it?

Energy change of a system at a constant

pressure

represented by  $\Delta H$ 







## What are the standard conditions?







What are the standard conditions?

#### 100kPa / 1atm pressure

#### 298K / 25°C temperature







## What does "in standard state" mean?







### The state an element/compound exists at in standard conditions (100kPa, 298K)







### Draw an enthalpy change diagram for an endothermic reaction, and one for an exothermic reaction







## Draw an enthalpy change diagram for an endothermic reaction, and one for an exothermic reaction reaction





## Define standard enthalpy of formation







- The enthalpy change when one mole of a
- compound is formed from it constituent elements
- in standard conditions (100kPa, 298K), with
- reactants and products in their standard states.





### Give an example of an equation which represents standard enthalpy of formation







### Give an example of an equation which represents standard enthalpy of formation

#### There are many e.g. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$







#### Define standard enthalpy of combustion







Define standard enthalpy of combustion

The enthalpy change when one mole of a

substance is burnt completely in oxygen in

standard conditions (100kPa, 298K), with

reactants and products in their standard states.







### Give an example of an equation which represents standard enthalpy of combustion







Give an example of an equation which represents standard enthalpy of combustion

E.g. C (s) + 
$$O_2(g) \rightarrow CO_2(g)$$







# What is the difference between heat and temperature?







### What is the difference between heat and temperature?

Heat is the sum of all particles' energy, therefore it is affected by the amount of substance; temperature is related to the mean kinetic energy of the particles in a system, so is independent of the number of particles present.







### How can you calculate enthalpy change from experimental data?







### How can you calculate enthalpy change from experimental data?

Use the equation Q = mc $\Delta$ T, where m is the mass of the substance being heated (usually water), c is the specific heat capacity of that substance (water's SHC = 4.18gJ<sup>-1</sup>K<sup>-1</sup>) and  $\Delta$ T is the change in temperature







#### Draw a simple calorimeter







![](_page_39_Picture_0.jpeg)

## How could this calorimeter be made more accurate?

![](_page_39_Figure_2.jpeg)

🕟 www.pmt.education 🛛 🖸 🕤 🕤 PMTEducation

![](_page_39_Picture_3.jpeg)

![](_page_40_Picture_0.jpeg)

#### How could this calorimeter be made more accurate?

Add draught screens at the sides, add a lid on top of the beaker, add mineral wool around the beaker  $\rightarrow$  all to insulate and reduce heat lost to the surroundings

![](_page_40_Figure_3.jpeg)

![](_page_40_Picture_5.jpeg)

![](_page_41_Picture_0.jpeg)

### What is a flame calorimeter; how does it differ to a simple calorimeter?

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

![](_page_42_Picture_0.jpeg)

What is a flame calorimeter; how does it differ to a simple calorimeter?

Reduces heat lost to the surrounding to give

more accurate results: has a spiral chimney

made of copper, an enclosed flame and the fuel

is burnt in pure oxygen, not air.

![](_page_42_Picture_6.jpeg)

![](_page_42_Picture_7.jpeg)

![](_page_43_Picture_0.jpeg)

### How would you measure the enthalpy change for a reaction occurring in (aq)?

![](_page_43_Picture_2.jpeg)

![](_page_43_Picture_3.jpeg)

![](_page_44_Picture_0.jpeg)

How would you measure the enthalpy change for a reaction occurring in (aq)?

Use an expanded polystyrene cup as a calorimeter (good insulator  $\rightarrow$  reduce heat loss). Heat is generated in the solution; measure this temperature change. Take heat capacity of solution to be 4.18 and density of solution =  $1 \text{ g cm}^{-3}$ .

D

PMTEducation

![](_page_44_Picture_3.jpeg)

![](_page_45_Picture_0.jpeg)

### What can you use to make experimental determination of enthalpy change of reaction more accurate?

www.pmt.education

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_46_Picture_0.jpeg)

## What can you use to make experimental determination of enthalpy change of reaction more accurate?

#### Cooling curves

![](_page_46_Picture_3.jpeg)

![](_page_46_Picture_4.jpeg)

![](_page_47_Picture_0.jpeg)

#### What is Hess's Law?

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_48_Picture_0.jpeg)

#### What is Hess's Law?

#### States that the enthalpy change for a reaction is

the same regardless of the route taken

![](_page_48_Picture_4.jpeg)

![](_page_48_Picture_5.jpeg)

![](_page_49_Picture_0.jpeg)

## What is the enthalpy of an element?

![](_page_49_Picture_2.jpeg)

![](_page_49_Picture_3.jpeg)

![](_page_50_Picture_0.jpeg)

The enthalpy of all elements in their standard states (the states in which they exist at 100kPa and 298K) is defined as 0

![](_page_50_Picture_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_51_Picture_0.jpeg)

## Define bond dissociation enthalpy.

![](_page_51_Picture_2.jpeg)

![](_page_51_Picture_3.jpeg)

![](_page_52_Picture_0.jpeg)

#### Define bond dissociation enthalpy.

The enthalpy change required to break a

covalent bond, with all species in the gaseous

state; differs for the same bond type in different molecules.

![](_page_52_Picture_5.jpeg)

![](_page_52_Picture_6.jpeg)

![](_page_53_Picture_0.jpeg)

#### Define mean bond enthalpy.

![](_page_53_Picture_2.jpeg)

![](_page_53_Picture_3.jpeg)

![](_page_54_Picture_0.jpeg)

#### Define mean bond enthalpy.

## Average value (across different chemical environments) for the bond dissociation enthalpy of a given bond.

![](_page_54_Picture_3.jpeg)

![](_page_54_Picture_4.jpeg)

![](_page_55_Picture_0.jpeg)

### Why may experimental methods for enthalpy determination not be very accurate?

![](_page_55_Picture_2.jpeg)

![](_page_55_Figure_3.jpeg)

![](_page_56_Picture_0.jpeg)

Why may experimental methods for enthalpy

determination not be very accurate?

Heat is lost to the surroundings

Not in standard conditions

Reaction may not go to completion

![](_page_56_Picture_6.jpeg)

![](_page_56_Picture_7.jpeg)

![](_page_57_Picture_0.jpeg)

#### Why will using bond enthalpies not be as accurate as using standard enthalpy of combustion/formation?

![](_page_57_Picture_2.jpeg)

![](_page_57_Picture_3.jpeg)

![](_page_58_Picture_0.jpeg)

Why will using bond enthalpies not be as accurate as using standard enthalpy of combustion/formation?

Bond enthalpies are a mean for the same bond across different molecules; standard enthalpy of combustion and formation apply just to that molecule, therefore they are more accurate.

![](_page_58_Picture_3.jpeg)

![](_page_58_Picture_4.jpeg)